United States Patent

US009477516B1

(12) (10) Patent No.: US 9,477,516 B1
Hockin et al. 45) Date of Patent: Oct. 25,2016
(54) CONCURRENT IN-MEMORY DATA 5,822,579 A 10/1998 Wichman
PUBLICATION AND STORAGE SYSTEM 5,864,697 A 1/1999 Shiell
5,884,062 A 3/1999 Wichman et al.
. . 5,896,305 A 4/1999 Bosshart et al.
(71) Applicant: Google Inc., Mountain View, CA (US) 5940311 A 8/1999 Dao et al.
5,963,721 A 10/1999 Shiell et al.
(72) Inventors: Timothe Hockin, Sunnyvale, CA (US); 5,991,863 A 11/1999 Dao et al.
Jakub Onufry Wojtaszezyk, Warsaw 6,009,516 A 12/1999 Steiss et al.
(PL); Jaroslaw Przybylowicz, Poznaii 6,119,222 A 9/2000 Shiell et al.
PL); Erik Christian Haugen 6,128,687 A 10/2000 Dao et al.
(> 3 g J 6,240,508 B1* 5/2001 Brown, III GOGF 9/383
Sunnyvale, CA (US); Xiaohui Chen, 710/39
Palo Alto, CA (US) (Continued)
(73) Assignee: Google Inc., Mountain View, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,. the term of this EP 01488 Al 10/19%3
patent is extended or adjusted under 35 EP 398695 A2 11/1990
U.S.C. 154(b) by 43 days. (Continued)
(21) Appl. No.: 14/663,095 Primary Examiner — Pierre-Michel Bataille
_ (74) Attorney, Agent, or Firm — Honigman Miller
(22) Filed: Mar. 19, 2015 Schwartz and Cohn LIP
(51) Imt.CL
GO6F 12/02 (2006.01) 7 ABSTRACT
GO6F 9/46 (2006.01) A method includes allocating a first memory location in a
GO6F 12/14 (2006.01) non-transitory data store in communication with a comput-
(52) US.CL ing device and writing data to the first memory location
CPCcccue. GO6F 9/467 (2013.01); GOG6F 12/023 when a first write transaction executes on the non-transitory
(2013.01); GO6F 12/1475 (2013.01); GO6F data store. The method further includes executing one or
2212/1044 (2013.01); GOGF 2212/1052 more read transactions on the first memory location after
(2013.01) completion of the first write transaction and incrementing a
(58) Field of Classification Search first pointer counter upon completion of the first write
CPC .. GO6F 12/023; GO6F 12/1465; GO6F 9/467, transaction and for each read transaction executing on the
GO6F 2212/1044; GO6F 2212/1052 first memory location. The method allocates a second
USPC e 711/170, 152, E12.002 memory location in the non-transitory data store and writes
See application file for complete search history. updated data to the second memory location when a second
. write transaction executes on the non-transitory data store to
(56) References Cited update the data. The first pointer counter decrements and the

U.S. PATENT DOCUMENTS

5,500,948 A 3/1996 Hinton et al.
5,796,995 A 8/1998 Nasserbakht et al.
5,815,420 A 9/1998 Steiss

second pointer counter increments upon completion of the
second write transaction. The first memory location de-
allocates when the first pointer counter is zero.

30 Claims, 14 Drawing Sheets

700

ALLOCATING A FIRST MEMORY LOCATION AND
WRITING DATA TO THE FIRST MEMORY LOGATION
WHEN A FIRST WRITE TRANSACTION

I

EXECUTING ONE OR MORE READ TRANSACTIONS ON
THE FIRST MEMORY LCOATION AFTER COMPLETION
OF THE FIRST WRITE TRANSAGTION

oy

INCREMENTING THE FIRST POINTER COUNTER UPON
COMPLETION OF THE FIRST WRITE TRANSACTION
AND FOR EACH READ TRANSACTION EXECUTING ON

THE FIRST MEMORY LOGATION i)

ALLOCATING A SECOND MEMORY LOCATION AND
WRITING DATA TO THE SECOND MEMORY LOCATION
WHEN A SECOND WRITE TRANSACTION
EXECUTES

DECREMENTING THE FIRST POINTER COUNTER AND
INGREMENTING A SEGOND POINTER COUNTER
ASSOCIATED WITH THE SECOND MEMORY LOCATION

o

DE-ALLOCATING THE FIRST MEMROY LOCATION
WHEN THE FIRST POINTER COUNTER DECREMENTS

g

US 9,477,516 B1

Page 2
(56) References Cited 2011/0219208 Al 9/2011 Asaad et al.
2012/0297167 Al 11/2012 Shah et al.
U.S. PATENT DOCUMENTS 2013/0024647 Al 1/2013 Gove

2013/0275715 Al 10/2013 Caprioli et al.
6,279,077 Bl 8/2001 Nasserbakht et al.

6,357,020 Bl 3/2002 Bohizic et al.
6.925.547 B2 /2005 Scot et al. FORFEIGN PATENT DOCUMENTS
*

7,107,367 Bl 9/2006 Hughes GO6F %?/11/?;(3) EP 837390 Al 4/1998
7484073 B2 1/2009 Cohen et al. EP 840207 Al 5/1998

7,680,987 Bl 3/2010 Clark et al. EP 848323 A2 6/1998

8,341,316 B2 12/2012 Kaplan et al. EP 2425330 Al 3/2012

8,452,942 B2 52013 Slegel et al. EP 2542973 Al 1/2013

8,549,204 B2* 10/2013 Meyers GOGF 13/4226 WO WO-2014021995 Al 2/2014

710/17
9,043,363 B2* 5/2015 Dragojevicccccoonn... 711/147 * cited by examiner

US 9,477,516 B1

Sheet 1 of 14

Oct. 25, 2016

U.S. Patent

051~

Gae
pe

0] pAdeereiBn
7+ £ A907 BB
=3 Z Adory e1egy
2+ t Adon ey

FEUNDTY IBRIGH Aiouopy

. o
HY.
i
< d
H
H
i
H
o :
o s 4
yi
H
L.
H
H
H
H
HE S
.

2I01SBIB(]

Y ~

o
e e

58800y

SHUIOLY

e jBUAOIO0

{ssihqupy) welac ety 4§
{sapnquny) pelgo ey 4
{senquy) joofgO piuopueisy .
{samquny; 10elqo plucpuels
(sanguiv} 1valao ppyn P
{sapoupy} P0lG0 priD 4
{sepnguny) oelo uaieg P

Bpoy BlEg / swslns ¥

HIOMIBN

»/! 0G1

US 9,477,516 B1

Sheet 2 of 14

Oct. 25, 2016

U.S. Patent

¢ Ol4

: ugl | QoL BOLL)
upgs (o wose ROSZ f 067 q0Ge ﬁ 80ae
AN n ((3 1 .
%ﬂ W\\ . 1’4 ‘\W ; : lj \w . S 1&.1 J.f.
RIDUISYY L JOWBIA < OB s
T s i g
e ! Ba H) { SO0 ™ =0 L
0S1L (5110558001 w - m (8108320014 m,ﬁm {s)1055800id | 21y (O
saneg i JBAIBG IBAISS T, S1S0H
A . A A g | fous
S N f 20z 0] o Ao
BLi d
¥0OC -
mm St
00z e~
ZEL HIOMBN
k4
921 T E 3 £ 3 £ Y2 92k
el B JSID BIO vek Loz,
¥ ¢ ¢ ¢
001 — ugel g0ct BO7 L

US 9,477,516 B1

Sheet 3 of 14

Oct. 25, 2016

U.S. Patent

mmmm&\

Ve 9Ol

\ BO9Z~

N

L = JBIUN0s JIUIC
CTAS 9 o8

BZ0E | AdoD Bl

W LORB00T AlDLISH

epoz - BI0IS BB

A
\J

04l

US 9,477,516 B1

\\\\\\Mmmmm mmmlwwﬂ_a/

Sheet 4 of 14

Oct. 25, 2016

U.S. Patent

0 =Jeuncd Jsiicgd L-OZ0E | 7 = J81nog Jsuiing
¥0Z ; vig
] 2Z0o . :)
SIIAA Z Adony e BZOZ T 1 AdoD e 912238 v
A e, 4
h g ind u g LonEcT ACUIBH 4e0e W LORBOOT AloLUSy m B1B 180 w
/ /
QNN@N qogz SI0IS B1EQ mmmm ez0z
(
0%l
&
00—

US 9,477,516 B1

Sheet 5 of 14

Oct. 25, 2016

U.S. Patent

A
n\ﬁamw (8c N

b= dounod ecd L-GZOS T 6 = Jsunon sep

7 Adony wiegy

T
o
Q
o

hY
7

ezZoot L Ad@hs eeq

uomm;\,

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA = Fm—
4 LOIesoT AUiep R TAVA uonEoo UGS
{ (
40se BJ0IG gle(] BOGE

A
Vi

04l

US 9,477,516 B1

Sheet 6 of 14

Oct. 25, 2016

U.S. Patent

qz0z
{

\Qm@m

87

LﬁwN m sed vo u ¢ = IDUNOD B LGP0 T 0 = unog seiod
, o SN ¥ 020t wwm
H ghAdopeg | | JZ0Z7 ¢ Adegeeg DI
pesy
m o LONERcT AWBi MMWON 73y UOHROGT AJCLusiy m Ele] ind u
wvmﬁ BIRQ 190 u 7 7)
.w qpgz SIS EIEd o06E 5202
4zi2
\\\\nl)wwww} ‘V/
/ a!.\...\\\

04l

ﬂmmmex

US 9,477,516 B1

Sheet 7 of 14

Oct. 25, 2016

U.S. Patent

vid

!

az0z
{

m Bl2(189 u

4€ "Old

0092

7 = JORINGTY JEIH0

pesy

Z Adory |yeq

pEsy

e,

¥

{

b

4

ﬁ 2jec] 196 u

{
azoz

wmmms\»

g unies0] Aouon

2002~ N

—U208

)
4zoe

(
052

S
920214

| = ISIUNOY IBIUIC

¢ Adon ®irg

73 UucHeNoTT AoWsly

2I0IS 1B

3

(
2082

A
Vi

04l

US 9,477,516 B1

Sheet 8 of 14

Oct. 25, 2016

U.S. Patent

4€ Ol

09z

L =GN0 SISO

Z Adory |yeq

peEay

{

14

/
{
b

&

(

B2 199 u

(
Gz0Z

%mmmo\»

g unies0] Aouon

2002~ N

—U208

)
4zoe

(
052

020673
9207

| = ISIUNOY IBIUIC

¢ Adon ®irg

73 UucHeNoTT AoWsly

2I0IS 1B

3

(
2082

A
Vi

04l

US 9,477,516 B1

Sheet 9 of 14

Oct. 25, 2016

U.S. Patent

Ot Old

09z

2002~ TN

L = s8punog ssuiog L0700

Z Adory |yeq

{

peESY

14

{
)

Nﬁ Ejec 199 u

{

4202

Boge—

N
g unies0] Aouon acie

SN V| 9z0ei
0702

7 = IBjunon isiuod

(

qangz B0 2180

14474
/
pEsy
0 uonensT AoWwsy m Bled 199 w
(7
2062 IZ0Z

A
Vi

04l

US 9,477,516 B1

Sheet 10 of 14

Oct. 25, 2016

U.S. Patent

\

N\QQ@N

ommwﬂ/

0 = Jejunon ssigd L0706

4 Logen0T Adouisy 4e0e

z Ad@l e E0E

| =SSN0 JBIUIN

¢ Adon BiRg

73 UOBBOTTT ASy

/
a5z BI0IG B8

{

2068

A
Vi

04l

A
upos—"

U.S. Patent

Oct. 25, 2016

Execute Read
Transaction

402 _~

¥

increment Pointer
Counter For Current
Memory Location

404 A

Transaction
“Lomplete?

Dacrement Pointer
408 .~ Cournter For Memory
Location

Pointer A
« Counter = 07 .

410

Beallocate Mamory
Location

412

FIG. 4

Sheet 11 of 14

[400

US 9,477,516 B1

U.S. Patent Oct. 25, 2016 Sheet 12 of 14 US 9,477,516 B1

[500

Execute A Write
502 A Transaction
¥
504 Allocate Memory For
~ 1 New Copy Of Data

A

~ Transaction
“Complete? »

506

Increment Pointer
508._1 Counter For Memory
Location

FIG. 5

U.S. Patent Oct. 25, 2016 Sheet 13 of 14 US 9,477,516 B1

830

/- 600

{‘6?0
FIG. 6

150
-
Data Store

LN

112
N
Data Processing
Device

U.S. Patent Oct. 25, 2016 Sheet 14 of 14 US 9,477,516 B1

(700

ALLOCATING A FIRST MEMORY LOCATION AND
WERITING DATA TO THE FIRST MEMORY LOCATION
WHEN A FIRST WRITE TRANSACTION

EXECUTES 762

4

EXECUTING ONE OR MORE READ TRANSACTIONS ON
THE FIRST MEMORY LCOATION AFTER COMPLETION
OF THE FIRST WRITE TRANSACTION 704

y
INCREMENTING THE FIRST POINTER COUNTER UPON
COMPLETION OF THE FIRST WRITE TRANSACTION
AND FOR EACH READ TRANSACTION EXECUTING ON

THE FIRST MEMORY LOCATION 706

y

ALLOCATING A SECOND MEMORY LOCATION AND
WERITING DATA TO THE SECOND MEMORY LOCATION
WHEN A SECOND WRITE TRANSACTION

EXECUTES 708

4
DECREMENTING THE FIRST POINTER COUNTER AND
INCREMENTING A SECOND POINTER COUNTER
ASSOCIATED WITH THE SECOND MEMORY LOCATION
10

y
DE-ALLOCATING THE FIRST MEMROY LOCATION
WHEN THE FIRST POINTER COUNTER DECREMENTS
TO ZERO

1

]

FIG. 7

US 9,477,516 Bl

1
CONCURRENT IN-MEMORY DATA
PUBLICATION AND STORAGE SYSTEM

TECHNICAL FIELD

This disclosure relates to data writes and data reads on a
storage system.

BACKGROUND

Distributed storage systems store data within a non-
transitory data store overlaying one or more memory loca-
tions. In some examples, the non-transitory data store
includes one or more tables for arranging the data in the
form of records and attributes for each record. A data store
management system may execute write transactions to put
data into the data store and execute read transactions where
the data is queried and retrieved from the data store. Here,
the writer atomically updates the data into the non-transitory
data store in a single operation, and subsequent readers
retrieve the atomically updated data. Atomic operations,
however, often prevent readers from getting data from the
data store while a writer is concurrently putting data into the
data store, and vice versa. Thus, bottlenecking often results
due to freezing one code path’s access to the data in the data
store while allowing another code path to access the data in
the data store. In other examples, when write transactions
execute during read transactions in progress, the data the
reader gets is often a copy that is incomplete or inconsistent
due to the intervening write transaction.

SUMMARY

One aspect of the disclosure provides a computing device
in communication with a non-transitory data store that
allocates a first memory location in the non-transitory data
store and writes data to the first memory location when a first
write transaction executes on the non-transitory data store.
The computing device executes one or more read transac-
tions on the first memory location after completion of the
first write transaction and increments (e.g., atomically) a
first pointer counter associated with the first memory loca-
tion upon completion of the first write transaction and for
each read transaction executing on the first memory location
to get the data. The computing device allocates a second
memory location in the non-transitory data store and writes
updated data to the second memory location when a second
write transaction executes on the non-transitory data store to
update the data. Upon or after completion of the second
write transaction, the computing device decrements the first
pointer counter associated with the first memory location
and increments a second pointer counter associated with the
second memory location. The computing device de-allocates
the first memory location when the first pointer counter
associated with the first memory location decrements to
Zero.

Implementations of the disclosure may include one or
more of the following optional features. In some implemen-
tations, the computing device blocks read access to a
memory location when a pointer counter associated with the
memory location is zero, wherein the pointer counter is zero
when a write transaction executing on the associated
memory location is in progress. In other implementations,
the computing device blocks write access to a memory
location upon executing a read transaction on the associated
memory location to get data (e.g., using reader-writer mutual
exclusion). The computing device may decrement a pointer

10

15

20

25

30

35

40

45

50

55

60

65

2

counter associated with a memory location after completion
of a read transaction on the associated memory location.

In some examples, when the second pointer counter
associated with the second memory location is zero, the
computing device executes one or more subsequent read
transactions on the first memory location to get the data
while the second write transaction concurrently executes on
the second memory location. In other examples, the com-
puting device executes one or more subsequent read trans-
actions on the second memory location to get the updated
data when the second pointer counter associated with the
second memory location is greater than zero. The computing
device may permit any read transactions executing on the
first memory location in progress to complete when the first
pointer counter associated with the first memory location is
greater than zero after the second pointer counter associated
with the second memory location increments. Optionally,
when a remaining number of memory cycles until comple-
tion of the second write transaction is less than a memory
cycle threshold, the computing device blocks one or more
subsequent read transactions from executing on the first
memory location to get the data and delays the one or more
subsequent read transactions from executing on the second
memory location to get the updated data until completion of
the second write transaction. Optionally, when a third write
transaction executes on the non-transitory data store to
update the data after completion of the second write trans-
action, the computing device allocates a third memory
location in the non-transitory data store and writes updated
data to the third memory location. The computing device
may decrement the second pointer counter associated with
the second memory location and increment a third pointer
counter associated with the third memory location upon
completion of the third write transaction. In some examples,
the computing device de-allocates the second memory loca-
tion when the second pointer counter associated with the
second memory location decrements to zero.

In some implementations, the computing device initial-
iZes a pointer counter associated with memory location upon
allocating the associated memory location. The computing
device may increment a pointer counter associated with a
memory location for each read transaction executing on the
associated memory location. Optionally, the computing
device executes a write transaction on the non-transitory
data store when the computing device receives a write
access request from an application programming interface
executing on a user device. Optionally, the computing
device executes a read transaction on the non-transitory data
store when the computing device receives a read access
request from an application programming interface execut-
ing on a user device. In some examples, the non-transitory
data store includes a hierarchal structure for storing the data,
the data including strongly-typed data.

Another aspect of the disclosure provides a remote system
that includes a non-transitory data store and a data process-
ing device in communication with the non-transitory data
store that allocates a first memory location in the non-
transitory data store and writes data to the first memory
location. The data processing device executes on or more
read transactions on the first memory location after comple-
tion of the first write transaction and increments a first
pointer counter associated with the first memory location
upon completion of the first write transaction and for each
read transaction executing on the first memory location to
get the data. The data processing device allocates a second
memory location in the non-transitory data store and writes
updated data to the second memory location when a second

US 9,477,516 Bl

3

write transaction executes on the non-transitory data store to
update the data. The data processing device decrements the
first pointer counter associated with the first memory loca-
tion and increments a second pointer counter associated with
the second memory location upon completion of the second
write transaction. The data processing device further de-
allocates the first memory location when the first pointer
counter associated with the first memory location decre-
ments to zero.

This aspect may include one or more of the following
optional features. In some implementations, the data pro-
cessing device blocks read access to a memory location
when a pointer counter associated with the memory location
is zero, wherein the pointer counter is zero when a write
transaction executing on the associated memory location is
in progress. In other implementations, the data processing
device blocks write access to a memory location upon
executing a read transaction on the associated memory
location to get data. The data processing device may dec-
rement a pointer counter associated with a memory location
after completion of a read transaction on the associated
memory location.

In some examples, when the second pointer counter
associated with the second memory location is zero, the data
processing device executes one or more subsequent read
transactions on the first memory location to get the data
while the second write transaction concurrently executes on
the second memory location. In other examples, the data
processing device executes one or more subsequent read
transactions on the second memory location to get the
updated data when the second pointer counter associated
with the second memory location is greater than zero. The
data processing device may permit any read transactions
executing on the first memory location in progress to com-
plete when the first pointer counter associated with the first
memory location is greater than zero after the second pointer
counter associated with the second memory location incre-
ments. Optionally, when a remaining number of memory
cycles until completion of the second write transaction is
less than a memory cycle threshold, the data processing
device blocks one or more subsequent read transactions
from executing on the first memory location to get the data
and delays the one or more subsequent read transactions
from executing on the second memory location to get the
updated data until completion of the second write transac-
tion. Optionally, when a third write transaction executes on
the non-transitory data store to update the data after comple-
tion of the second write transaction, the data processing
device allocates a third memory location in the non-transi-
tory data store and writes updated data to the third memory
location. The data processing device may decrement the
second pointer counter associated with the second memory
location and increment a third pointer counter associated
with the third memory location upon completion of the third
write transaction. In some examples, the data processing
device de-allocates the second memory location when the
second pointer counter associated with the second memory
location decrements to zero.

In some implementations, the data processing device
initializes a pointer counter associated with memory location
upon allocating the associated memory location. The data
processing device may increment a pointer counter associ-
ated with a memory location for each read transaction
executing on the associated memory location. Optionally,
the data processing device executes a write transaction on
the non-transitory data store when the data processing
device receives a write access request from an application

10

15

20

25

30

35

40

45

50

55

60

65

4

programming interface executing on a user device. Option-
ally, the data processing device executes a read transaction
on the non-transitory data store when the data processing
device receives a read access request from an application
programming interface executing on a user device. In some
examples, the non-transitory data store includes a hierarchal
structure for storing the data, the data including strongly-
typed data.

The details of one or more implementations of the dis-
closure are set forth in the accompanying drawings and the
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and
from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic view of an example system for
providing a user device concurrent atomic access to a
non-transitory data store.

FIG. 2 is a schematic view of an example system for
providing one or more user devices atomic access to a
non-transitory data store of a distributed storage system.

FIGS. 3A-3H show schematic views of example write and
read transactions executing on an example non-transitory
data store.

FIG. 4 is an exemplary flowchart for executing a read
transaction.

FIG. 5 is an exemplary flowchart for executing a write
transaction.

FIG. 6 is a schematic view of an example computing
device in communication with a non-transitory data store.

FIG. 7 is a flowchart of an example method for executing
write and read transactions on a non-transitory data store
using the computing device of FIG. 6.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, in some implementations, a
system 100 includes one or more user devices 120a-n
associated with a user 102. The user devices 120 are in
communication, via a network 132, with a distributed stor-
age system 200 having a scalable/elastic non-transitory data
store 150. In some implementations, the distributed storage
system 200 executes a computing device 112 that manages
access to the non-transitory data store 150. User devices 120
may put data 202 into the non-transitory data store 150 when
the computing device 112 executes write transactions 204
and may get the data 202 from the non-transitory data store
150 when the computing device 112 executes read transac-
tions 214. As used herein, putting data 202 into the non-
transitory data store 150 refers to writing data 202 to the
non-transitory data store 150 and getting the data 202 from
the non-transitory data store 150 refers to reading the data
202 stored in the non-transitory data store 150. In some
examples, the computing device 112 executes write trans-
actions 204 when the computing device 112 receives a write
access request 128 from a user device 120 via the network
132. Likewise, the computing device 112 may execute read
transactions 214 when the computing device 112 receives a
read access request 140 from a user device 120 via the
network 132.

The user devices 120 can be any computing devices that
are capable of communicating with the computing device
112 through the network 132. User devices 120 include, but
are not limited to, desktop computing devices and mobile

US 9,477,516 Bl

5

computing devices, such as laptops, tablets, smart phones,
and wearable computing devices (e.g., headsets and/or
watches). The user devices 120 may further execute a
graphical user interface (GUI) 222 on a display 122 to write
data 202 to the non-transitory data store 150 and/or and read
data 202 from the non-transitory data store 150 of the
distributed storage system 200.

In some implementations, the user devices 120 execute a
transaction application programming interface (API) 124
that is responsible for accessing the underlying data 202, for
example, putting data 202 into the non-transitory data store
150 and/or getting data 202 from the non-transitory data
store 150. The transaction API 124 translates commands,
such as look-up or insert data commands, into sequences of
primitive network interface controller operations. The trans-
action API 124 interfaces with the user devices 120 and the
non-transitory data store 150 of the distributed storage
system 200. In some implementations, the transaction API
124 enables user devices 120 to use Structured Query
Language (SQL) to query data 202 stored in the non-
transitory data store 150 and write updated data 202 such as
indexes into the non-transitory data store 150 for faster
querying to increase the efficiency of the non-transitory data
store 150 even when the amount of stored data 202 increases
over time.

The network 132 may include various types of networks,
such as local area network (LAN), wide area network
(WAN), and/or the Internet. Although the network 132 may
represent a long range network (e.g., Internet or WAN), in
some implementations, the network 132 includes a shorter
range network, such as a local area network (LAN). In some
implementations, the network 132 uses standard communi-
cations technologies and/or protocols. Thus, the network
132 can include links using technologies, such as Ethernet,
Wireless Fidelity (WiFi) (e.g., 802.11), worldwide interop-
erability for microwave access (WiMAX), 3G, Long Term
Evolution (LTE), digital subscriber line (DSL), asynchro-
nous transfer mode (ATM), InfiniBand, PCI Express
Advanced Switching, etc. Similarly, the networking proto-
cols used on the network 132 can include multiprotocol label
switching (MPLS), the transmission control protocol/Inter-
net protocol (TCP/IP), the User Datagram Protocol (UDP),
the hypertext transport protocol (HTTP), the simple mail
transfer protocol (SMTP), the file transter protocol (FTP),
etc. The data exchanged over the network 132 can be
represented using technologies and/or formats including the
hypertext markup language (HTML), the extensible markup
language (XML), etc. In addition, all or some of the links
can be encrypted using conventional encryption technolo-
gies, such as secure sockets layer (SSL), transport layer
security (TLS), virtual private networks (VPNs), Internet
Protocol security (IPsec), etc. In other examples, the net-
work 132 uses custom and/or dedicated data communica-
tions technologies instead of, or in addition to, the ones
described above.

In some implementations, the non-transitory data store
150 stores data 202 as a collection of attributes/tables each
contributing a set of columns and rows. Each column may
include pertinent records and each row may include the data
202. In some examples, relationships are added between
tables to indicate that two sets of data 202 are inter-related.
In some implementations, the non-transitory data store 150
is a relational database. In the example shown, the non-
transitory data store 150 includes a schema defining a
supported language and utilized to set integrity constraints
such that the data 202 is strongly-typed and arranged in a
hierarchical structure in a manner similar to a file system.

10

15

20

25

30

35

40

45

50

55

60

65

6

For example, attributes of a parent object includes a plurality
of child objects, each child object having attributes includ-
ing a plurality of grandchild objects, and so on. Requiring
the data 202 to be strongly-typed enforces strict restrictions
on intermixing values with different data 202 types when
executing write and read transactions 204, 214, respectively.
Values of strongly-typed data 202 can include STRING,
INT, VARCHAR, CBLOB, DECIMAL, etc. In one example,
a type person would include a STRING for the person’s
name and an INT for the person’s age. Using strongly typed
data for the data store 150 allows for compound structures
beyond primitives, and is exposed to the consumer through
an application programming interface (API) in the form of
language-native types. For example, a C++ implementation
of the API accepts as input and returns as output arbitrary
C++ types, without knowing what those types are.

Referring to FIG. 2, in some implementations, the dis-
tributed storage system 200 includes loosely coupled
memory hosts 110, 110a-# (e.g., computers or servers), each
having a computing resource 112 (e.g., one or more proces-
sors or central processing units (CPUs)) in communication
with storage resources 114 (e.g., memory, flash memory,
dynamic random access memory (DRAM), phase change
memory (PCM), and/or disks) that may be used for caching
data. The non-transitory data store 150 (e.g., a storage
abstraction) overlain on the storage resources 114 allows
scalable use of the storage resources 114 by one or more user
devices 120, 120a-r. The user devices 120 may communi-
cate with the memory hosts 110 through the network 132
(e.g., via remote procedure calls (RPC)).

In some implementations, the distributed storage system
200 is “single-sided,” eliminating the need for any server
jobs for responding to RPC from user devices 120 to write
data 202 when executing the write transaction 204 or read
data 202 when executing the read transaction 214 on their
corresponding memory hosts 110 and may rely on special-
ized hardware to process remote write and read access
requests 128, 130, respectively, instead. “Single-sided”
refers to the method by which most of the request processing
on the memory hosts 110 may be done in hardware rather
than by software executed on CPUs 112 of the memory hosts
110. Rather than having a processor 112 of a memory host
110 (e.g., a server) execute a server process 118 that exports
access of the corresponding storage resource 114 (e.g.,
non-transitory memory) to user processes 126 executing on
the user devices 120, the user devices 120 may directly
access the storage resource 114 through a network interface
controller (NIC) 116 of the memory host 110. In other
words, a user process 126 executing on a user device 120
may directly interface with one or more storage resources
114 without requiring execution of a routine of any server
processes 118 executing on the computing resources 112.
This single-sided distributed storage architecture offers rela-
tively high-throughput and low latency, since user devices
120 can access the storage resources 114 of the non-
transitory data store 150 without interfacing with the com-
puting resources 112 of the memory hosts 110. This has the
effect of decoupling the requirements for storage 114 and
CPU 112 cycles that typical two-sided distributed storage
systems 200 carry. The single-sided distributed storage
system 200 can utilize remote storage resources 114 regard-
less of whether there are spare CPU 112 cycles on that
memory host 110; furthermore, since single-sided operations
do not contend for server CPU 112 resources, a single-sided
system 200 can serve cache requests 128, 130 with very
predictable, low latency, even when memory hosts 110 are
running at high CPU 112 utilization. Thus, the single-sided

US 9,477,516 Bl

7

distributed storage system 200 allows higher utilization of
both cluster storage 114 and CPU resources 112 than tradi-
tional two-sided systems, while delivering predictable, low
latency.

The distributed storage system 200 may put data 202 in
dynamic random access memory (DRAM) 114 (e.g., the
non-transitory data store 150) and get the data 202 from the
remote memory hosts 110 via remote direct memory access
(RDMA)-capable network interface controllers (NIC) 116.
A network interface controller 116 (also known as a network
interface card, network adapter, or LAN adapter) may be a
computer hardware component that connects a computing
device/resource 112 to the network 132. Both the memory
hosts 110a-z and the user device 120 may each have a
network interface controller 116 for network communica-
tions. A host process 118 executing on the computing
processor 112 of the memory host 110 may allocate a
memory location 250a-» when executing a write transaction
204 to write updated data 202; furthermore, the host process
118 may de-allocate a memory location 250a-» storing data
202 when no read transactions 214 are currently executing
on the memory location 250a-» and the write transaction
204 completes the write of the updated data 202 to the
allocated memory location 250a-7.

The distributed storage system 200 may include a co-
located software process to register memory 114 for remote
access with the network interface controllers 116 and set up
connections with user processes 126. Once the connections
are set up, user processes 126 can access the registered
memory 114 via engines in the hardware of the network
interface controllers 116 without any involvement from
software on the local CPUs 112 of the corresponding
memory hosts 110.

In some implementations, the distributed storage system
200 enables concurrent atomic access to the non-transitory
data store 150 a read transaction 212 executing on a first
memory location 250a to get data 202 without preventing a
write transaction 214 from executing on a second memory
location 2526 to put updated data 202 while the read
transaction 214 is executing concurrently. Accordingly, con-
current atomic access to the non-transitory data store 150
avoids delays since a read transaction 214 will not be
blocked from executing on the non-transitory data store 150
to get data 202 while a write transaction 212 executes on the
non-transitory data store 150 to put updated data 202, and
vice versa. In some examples, the first and second memory
locations 250a-b are isolated from one another such that
read access to the first memory location 250a is permitted
for getting data 202 while write access to the first memory
location 250a for putting updated data 202 is blocked.
Similarly, write access to the second memory location 2505
is permitted for putting the updated data 202 while read
access to the second memory location 2505 for getting the
updated data 202 is blocked until completion of the under-
lying write transaction 212. In other words, the concurrent
atomic access facilitates write transactions 204 to never
write data to memory locations 250 once read access is
permitted thereto; and read transactions 214 will never get
updated data 202 from a memory location 250 until comple-
tion of a corresponding write transaction 204 executing
thereon. Thus, read transactions 214 will never get/read data
202 that is incomplete while a write transaction 204 executes
concurrently.

The computing device 112 holds one or more pointer
counters associated with memory locations 250a-r» within
the non-transitory data store 150. In some implementations,
when the computing device 112 allocates a first memory

10

15

20

25

30

35

40

45

50

55

60

65

8

location 250qa for putting data 202 when a write transaction
204 executes, a first pointer counter associated with the first
memory location 250a is initialized by the computing device
112. The first pointer counter includes a value of zero while
the write transaction 204 executing on the first memory
location 250a is in progress. In some examples, when the
first pointer counter associated with the first memory loca-
tion 250 is zero upon initializing the first memory location
250a, the computing device 112 blocks read access to the
first memory location 250a. After completion of the write
transaction 204, the computing device 112 may increment
the first pointer counter associated with the first memory
location 205. Once the first pointer counter associated with
the first memory location 250q is incremented, i.e., the first
pointer counter is greater than zero, the computing device
112 may permit read access to the first memory location
250aq to get the data. In some implementations, the comput-
ing device 112 increments the first pointer counter associ-
ated with the first memory location 250a for each read
transaction 214 executing on the first memory location 250a
to get the data 202.

In some implementations, when the computing device 112
executes a second write transaction 204 on the non-transi-
tory data store 150 to update the data 202, the computing
device 112 allocates a second memory location 2505 for
putting updated data 202 and initializes a second pointer
counter associated with the second memory location 2505.
In some examples, upon completion of the second write
transaction 204, the computing device 112 decrements the
first pointer counter associated with the first memory loca-
tion 250a and increments the second pointer counter asso-
ciated with the second memory location 2505. In some
examples, when the first pointer counter associated with the
first memory location 250a decrements to zero, the comput-
ing device de-allocates the first memory location 250a. The
computing device 112 operates recursively, whereat the
computing device 112 will accordingly allocate and de-
allocate third, fourth, . . . n memory locations 250a-», and
increment and decrement associated pointer counters 260a-
n, as data 202 within the non-transitory data store 150 is
continuously updated.

FIGS. 3A-3H show schematic views 300a-/ of example
write and read transactions 204, 214, respectively, executing
on an example non-transitory data store 150. FIG. 3A shows
the non-transitory data store 150 including a first memory
location (“Memory Location A”) 250a that stores a first
copy of data (“Data Copy 17) 202a. A first pointer counter
260q associated with the first memory location 2504 is one
indicating that no write transaction 204 is currently execut-
ing on the first memory location 250a and read access to the
first memory location 250a is permissible. A status indicator
302a associated with the first memory location 2504 indi-
cates the data 202a is a complete copy.

Referring to FIG. 3B, a read transaction 214 executes on
the first memory location 250a to get data 202. The first
pointer counter 260a associated with the first memory
location 2504 is incremented for the executing read trans-
action 214. In the example shown, the first pointer counter
260q is two. While the read transaction 214 executes on the
first memory location 250q, the computing device 112
allocates a second memory location (“Memory Location B”)
2505 when a write transaction 204 executes to write an
updated copy of the data (“Data Copy 27) 2025 to the
non-transitory data store 150, i.e., via the second memory
location 2505. Upon or after executing the write transaction
204 on the second memory location 2505, the computing
device 112 initializes a second pointer counter 2605 asso-

US 9,477,516 Bl

9

ciated with the second memory location. In the example
shown, the second pointer counter 2605 is zero indicating
the write transaction 204 is currently executing on the
second memory location 2505 and the computing device 112
is blocking read access to the second memory location 2505.
Furthermore, the status indicator 30205 associated with the
second memory location 2506 indicates only about half the
updated data 2025 is put into the second memory location
2505. More specifically, the status indicator 3025 indicates
a remaining number of memory cycles until completion of
the underlying write transaction 204 executing on the second
memory location 2505.

FIG. 3C shows completion of the write transaction 204
that previously executed on the second memory location
2505 in FIG. 3B. In the example shown, the second pointer
counter 26056 associated with the second memory location
2505 is incremented from zero to one upon completion of
the write transaction 204 and the status indicator 3024
indicates the copy of the updated data 2025 is complete;
furthermore, the first pointer counter 260a associated with
the first memory location 250a is decremented upon comple-
tion of write transaction 204 on the second memory location
2506. In the example shown, the first pointer counter 260a
is also decremented after the read transaction 214 that
previously executed on the first memory location 250a in
FIG. 3B completes. Accordingly, the first memory location
250a is de-allocated when the first pointer counter 260
decrements to zero.

Referring to FIG. 3D, two read transactions 214 execute
on the second memory location 2505 to get data 2025
corresponding to the updated copy of data (“Data Copy 2”)
2025 put into the second memory location 25056 by the write
transaction 204 illustrated in FIG. 3C. The second pointer
counter 26056 associated with the second memory location
250q is incremented for each one of the executing read
transactions 214. In the example shown, the second pointer
counter 2605 is three. While the two read transactions 214
execute on the second memory location 2505, the computing
device 112 allocates a third memory location (“Memory
Location C”) 250c¢ when a write transaction 204 executes to
write a subsequent updated copy of the data (“Data Copy 3”)
202c¢ to the non-transitory data store 150, i.e., via the third
memory location 250¢, whereat the computing device 112
initializes a third pointer counter 260c¢ associated with the
third memory location 250¢. In the example shown, the third
pointer counter 260c is zero indicating the write transaction
204 is currently executing on the third memory location
250¢ and the computing device 112 is blocking read access
to the third memory location 250c¢. Furthermore, the status
indicator 302¢ associated with the third memory location
250c¢ indicates only about half the subsequent updated data
202¢ is put into the third memory location 250c. More
specifically, the status indicator 302¢ indicates a remaining
number of memory cycles until completion of the underly-
ing write transaction 204 executing on the third memory
location 250c.

FIG. 3E shows the completion of the write transaction 204
that previously executed on the third memory location 250¢
in FIG. 3D. In the example shown, the third pointer counter
260c associated with the third memory location 250c¢ is
incremented from zero to one upon completion of the write
transaction 204 and the status indicator 302¢ indicates the
copy of the subsequent updated data 202c¢ is complete;
furthermore, the second pointer counter 2605 associated
with the second memory location 250a is decremented upon
completion of write transaction 204 on the third memory
location 250c. The second pointer counter 2605 associated

10

15

20

25

30

35

40

45

50

55

60

65

10

with the second memory location is two while each of the
two read transactions 204 executing on the second memory
location 2505 are still in progress. Referring to FIG. 3F, the
second pointer counter 260b associated with the second
memory location 2505 is decremented to one after comple-
tion of one of the read transactions 204 on the second
memory location 2505.

Referring to FIG. 3G, a subsequent read transaction 214
executes on the third memory location 250c¢ to get the data
202c¢ corresponding to the updated copy of data (“Data Copy
3) 202¢ put by the write transaction 204 shown in FIG. 3C.
The third pointer counter 260c¢ associated with the third
memory location 250c¢ is incremented for the subsequent
executing read transaction 214. In the example shown, the
third pointer counter 260c¢ is two. The second pointer
counter 26056 associated with the second memory location
remains one while the read transaction 214 executing on the
second memory location 2505 shown in FIG. 3F is still in
progress.

FIG. 3H shows the second pointer counter 2605 associ-
ated with the second memory location 2505 decrementing to
zero after completion of the read transaction 214 on the
second memory location 2505 illustrated FIG. 3G resulting
in the computing device 112 de-allocating the second
memory location 2505. The third pointer counter 260c
referencing the third memory location 250¢ decrements to
one after completion of the read transaction 214 on the third
memory location 350c illustrated in FIG. 3G.

FIG. 4 is a flowchart 400 of example operations per-
formed by the computing device 112 of the distributed
storage system 200 of FIG. 2 when executing a read trans-
action 214. The flowchart 400 starts at operation 402 where
the computing device 112 executes the read transaction 214
on a memory location 250 to get the data 202. In some
implementations, the computing device 112 executes the
read transaction 214 in response to receiving a read access
request 130 through a network 132 from a transaction API
124 executing on a user device 120 to get the data 202 from
the non-transitory data store 150.

In some examples, when the read access request 130 is
received while a write transaction 204 is currently executing
on a subsequent memory location 250 to update the data
202, the computing device 112 may block the read transac-
tion 214 from getting data 202 not including the update and
require the read transaction 214 to wait before executing on
the new memory location 250 to get the updated data 202
until completion of the write transaction 204 if a remaining
number of memory cycles (e.g., status indicator 302 of
FIGS. 3A-3H) until completion of the write transaction 204
is less than a memory cycle threshold. In this example, the
computing device 112 beneficially gets the updated data 202
while only requiring a short delay time (less than the
memory cycle threshold) before executing the read transac-
tion 214 to get the updated data 202.

At operation 404, a pointer counter 260 associated with
the memory location 250 where the read transaction 214
executes is incremented, as illustrated in FIG. 3B. In some
examples, the computing device 112 blocks write access to
the associated memory location upon executing the read
transaction 214 upon the associated memory location 250.
At operation 406, the computing device 112 decides whether
or not the read transaction 204 is complete. If the read
transaction 214 is not complete (“N”) then the flowchart 400
reverts back to—and repeats—operation 404. When the read
transaction 214 is completes (“Y”’) the flowchart 400 pro-
ceeds to operation 408 where the pointer counter 260 is
decremented, as illustrated in FIG. 3F.

US 9,477,516 Bl

11

At operation 410, the computing device 112 decides
whether or not the pointer counter 260 associated with the
memory location is zero. If the pointer counter 260 is not
zero (“N”), then the flowchart 400 reverts back to—and
repeats—operation 410. When the pointer counter 260 is
zero (“Y”) the flowchart 400 proceeds to operation 412
where the memory location 250 is de-allocated by the
computing device 112, as illustrated in FIGS. 3C and 3H.

FIG. 5 is a flowchart 500 of example operations per-
formed by the computing device 112 of the distributed
storage system 200 of FIG. 2 when executing a write
transaction 204. The flowchart 500 starts at operation 502
where the computing device 112 executes the write trans-
action 204 to write data 202 to the non-transitory data store
150. In some implementations, the computing device 112
executes the write transaction 204 in response to receiving
a write access request 128 through a network 132 from a
transaction API 124 executing on a user device 120 to put
the data 202 into the non-transitory data store 150. At
operation 504, the computing device 112 allocates a memory
location 250 in the non-transitory data store, as illustrated in
FIG. 3B. In some implementations, a pointer counter 260
associated with the allocated memory location 250 is ini-
tialized.

At operation 506, the computing device 112 decides
whether or not the write transaction 204 is complete. If the
write transaction 204 has not completed, then the flowchart
400 reverts back to—and repeats—operation 506. The flow-
chart 500 proceeds to operation 508 after completion of the
write transaction 204 where the computing device 112
increments the pointer counter 260 for the associated
memory location 250, as illustrated in FIG. 3C. In some
examples, the computing device 112 may simultaneously
decrement another pointer counter 260 associated with a
memory location permitting read access to a prior copy of
the data 202.

FIG. 6 is a schematic view of an example computing
device 600 that may be used to implement the systems and
methods described in this document, such as the computing
resource 112 and the non-transitory data store 150. The
computing device 600 is intended to represent various forms
of digital computers, such as laptops, desktops, worksta-
tions, personal digital assistants, servers, blade servers,
mainframes, and other appropriate computers. The compo-
nents shown here, their connections and relationships, and
their functions, are meant to be exemplary only, and are not
meant to limit implementations of the inventions described
and/or claimed in this document.

The computing device 600 includes a processor 610 (i.e.,
data processing device), memory 620, a storage device 630,
a high-speed interface/controller 640 connecting to the
memory 620 and high-speed expansion ports 650, and a low
speed interface/controller 660 connecting to a low speed bus
670 and storage device 630. Each of the components 610,
620, 630, 640, 650, and 660, are interconnected using
various busses, and may be mounted on a common moth-
erboard or in other manners as appropriate. The processor
610 can process instructions for execution within the com-
puting device 600, including instructions stored in the
memory 620 or on the storage device 630 to display graphi-
cal information for a GUI on an external input/output device,
such as a display 680 coupled to a high speed interface 640.
In other implementations, multiple processors and/or mul-
tiple buses may be used, as appropriate, along with multiple
memories and types of memory. Also, multiple computing
devices 600 may be connected, with each device providing

20

25

40

45

12

portions of the necessary operations (e.g., as a server bank,
a group of blade servers, or a multi-processor system).

The memory 620 stores information non-transitorily
within the computing device 600. The memory 620 may be
a computer-readable medium, a volatile memory unit(s), or
non-volatile memory unit(s). The non-transitory memory
620 may be physical devices used to store programs (e.g.,
sequences of instructions) or data (e.g., program state infor-
mation) on a temporary or permanent basis for use by the
computing device 600. Examples of non-volatile memory
include, but are not limited to, flash memory and read-only
memory (ROM)/programmable read-only memory
(PROM)/erasable programmable read-only —memory
(EPROM)/electronically erasable programmable read-only
memory (EEPROM) (e.g., typically used for firmware, such
as boot programs) as well as disks or tapes. Examples of
volatile memory include, but are not limited to, random
access memory (RAM), dynamic random access memory
(DRAM), static random access memory (SRAM), phase
change memory (PCM).

The storage device 630 is capable of providing mass
storage for the computing device 600. In some implemen-
tations, the storage device 630 is a computer-readable
medium. In various different implementations, the storage
device 630 may be a floppy disk device, a hard disk device,
an optical disk device, or a tape device, a flash memory or
other similar solid state memory device, or an array of
devices, including devices in a storage area network or other
configurations. In additional implementations, a computer
program product is tangibly embodied in an information
carrier. The computer program product contains instructions
that, when executed, perform one or more methods, such as
those described above. The information carrier is a com-
puter- or machine-readable medium, such as the memory
620, the storage device 630, or memory on processor 610.

The high speed controller 640 manages bandwidth-inten-
sive operations for the computing device 600, while the low
speed controller 660 manages lower bandwidth-intensive
operations. Such allocation of duties is exemplary only. In
some implementations, the high-speed controller 640 is
coupled to the memory 620, the display 680 (e.g., through a
graphics processor or accelerator), and to the high-speed
expansion ports 650, which may accept various expansion
cards (not shown). In some implementations, the low-speed
controller 660 is coupled to the storage device 630 and
low-speed expansion port 670. The low-speed expansion
port 670, which may include various communication ports
(e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more input/output devices, such as a
keyboard, a pointing device, a scanner, or a networking
device, such as a switch or router, e.g., through a network
adapter.

The computing device 600 may be implemented in a
number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 600a
or multiple times in a group of such servers 6004, as a laptop
computer 6005, or as part of a rack server system 600c.

In some implementations, the computing device 600
implementing the computing resource(s) 112 is in commu-
nication with data store 150 (e.g., in the memory 620). The
computing resource 112 (executing on the data processing
device 610) executes the write and read transactions 204,
214, respectively, allocates memory locations 250a-# in the
non-transitory data store 150, increments and decrements
pointer counters 260a-» associated with the memory loca-
tions 250a-n, and de-allocates memory locations 250a-n
when the associated pointer counters 260a-1 decrement to

US 9,477,516 Bl

13

zero. For example, the computing resource 112 may receive
a write access request 128 (or a read access request 130)
from a user device 120, execute a write transaction 204 (or
a read transaction 214) on the data store 150, allocate a
memory location 250 in the data store 150, and write data
202 to the memory location 250. In some examples, the
computing resource 112 initializes a pointer counter 260
associated with the memory location 250 when the write
transaction executes and increments the pointer counter 260
upon completion of the write transaction 204. For instance,
the pointer counter 260 is equal to zero upon initializing and
increments to one upon completion of the write transaction
204 executing on the associated memory location 250a-». In
other examples, the computing resource 112 executes one or
more read transactions 214 on the memory location 250 after
completion of the write transaction 204 and increments the
pointer counter for each read transaction 214 executing on
the memory location 250 to get the data 202. In some
examples, the computing resource 112 decrements the
pointer counter 260 after completion of each read transac-
tion 214 executing on the memory location 250. In some
examples, when updating the data 202, the computing
resource 112 executes a subsequent second write transaction
204 on the data store 150 to update the data 202, allocates
a subsequent second memory location 250 in the data store
150, and writes updated data 202 to the subsequent second
memory location 250 and initializes a subsequent second
pointer counter 260 associated with the subsequent second
memory location 250. While the subsequent second pointer
counter 260 is zero, the computing resource 112 may
execute one or more subsequent read transactions 214 on the
memory location 250 to get the data 202 (un-updated data
202) while the subsequent second write transaction 204
concurrently executes on the subsequent second memory
location 250. Upon completion of the second write transac-
tion 204, the computing resource 112 decrements the pointer
counter associated with the memory location 250 (that
includes the data 202) and increments a subsequent second
pointer counter associated with the subsequent second
memory location 250 (that includes the updated data 202)
upon completion of the subsequent second write transaction
204. Accordingly, when the subsequent second pointer coun-
ter 260 is greater than zero, the computing resource 112 may
execute one or more subsequent read transactions 214 on the
subsequent second memory location 250 to get the updated
data 204. In some examples, the computing resource 112
de-allocates the memory location 250 when the pointer
counter 260 associated with the memory location 250 dec-
rements to zero.

In some examples, the computing resource 112 blocks
read access to a memory location 250 when an associated
pointer counter 260 is zero, wherein the pointer counter 260
is zero when a write transaction 204 executing on the
associated memory location is in progress. In other
examples, the computing resource 112 blocks write access to
a memory location 250 upon executing a read transaction
214 upon the associated memory location 250.

A software application (i.e., a software resource 110s)
may refer to computer software that causes a computing
device to perform a task. In some examples, a software
application may be referred to as an “application,” an “app,”
or a “program.” Example applications include, but are not
limited to, system diagnostic applications, system manage-
ment applications, system maintenance applications, word
processing applications, spreadsheet applications, messag-
ing applications, media streaming applications, social net-
working applications, and gaming applications.

10

15

20

25

30

35

40

45

50

55

60

65

14

The non-transitory memory 110/m may be physical
devices used to store programs (e.g., sequences of instruc-
tions) or data (e.g., program state information) on a tempo-
rary or permanent basis for use by a computing device
110/%¢. The non-transitory memory 1102m may be volatile
and/or non-volatile addressable semiconductor memory.
Examples of non-volatile memory include, but are not
limited to, flash memory and read-only memory (ROM)/
programmable read-only memory (PROM)/erasable pro-
grammable read-only memory (EPROM)/electronically
erasable programmable read-only memory (EEPROM)
(e.g., typically used for firmware, such as boot programs).
Examples of volatile memory include, but are not limited to,
random access memory (RAM), dynamic random access
memory (DRAM), static random access memory (SRAM),
phase change memory (PCM) as well as disks or tapes.

FIG. 7 is a flowchart of an example method 700 executed
by the computing device 600 of FIG. 6 for executing write
and read transactions 204, 214, respectively, on the non-
transitory data store 150. The flowchart starts at operation
702 where the data processing device 112 (executing the
computing device 112) allocates a first memory location
250q in the non-transitory data store 150 and writes data
202a to the first memory location 250a when a first write
transaction 204 executes. The first write transaction 204 may
execute when the computing device 112 receives a write
access request 128 from a transaction API 124 executing on
a user device 120. In some implementations, the computing
device 112 initializes a first pointer counter 260a associated
with the first memory location 250a and blocks read access
to the first memory location 250a when the first pointer
counter 260qa is zero while the first write transaction 204
executing on the first memory location 250q is in progress.
At operation 704, the computing device 112 executes one or
more read transactions 214 on the first memory location
250aq to get the data 202a after completion of the first write
transaction 204, as illustrated in FIG. 3B. In some examples,
the computing device 112 blocks subsequent write access to
the first memory location 250qa. In some implementations, a
read transaction 214 executes when the computing device
112 receives a read access request 130 from a transaction
API 124 executing on the user devices 120.

At operation 706, the computing device 112 increments
the first pointer counter 260a upon completion of the first
write transaction 204 and for each read transaction 214
executing on the first memory location 250a, as illustrated in
FIG. 3B. The flowchart proceeds to operation 708 where the
computing device(s) 112 allocates a second memory loca-
tion 2505 in the non-transitory data store 150 and writes
updated data 2025 to the second memory location 2505
when a second write transaction 204 executes on the non-
transitory data store 150 to update the data 2025, as illus-
trated in FIG. 3B. In some implementations, the computing
device 112 initializes a second pointer counter 2605 asso-
ciated with the second memory location 25056 and blocks
read access to the second memory location 2505 when the
second pointer counter 2605 is zero while the second write
transaction 204 executing on the second memory location
2505 is in progress. At operation 710, the computing device
112 decrements the first pointer counter 260a associated
with the first memory location 250a and increments the
second pointer counter 260b associated with the second
memory location 2505 upon completion of the second write
transaction 204, as illustrated in FIG. 3C. In some imple-
mentations, the computing device 112 decrements a pointer
counter 260 associated with a memory location 250 for each
read transaction 215 on the associated memory location 250

US 9,477,516 Bl

15

that completes. In some examples, when the first pointer
counter 260a associated with the first memory location 250a
is greater than zero after the second pointer counter 2605
increments, the computing device 112 permits any read
transactions 214 executing on the first memory location
250q already in progress to complete. However, any subse-
quent read transactions 214 will execute on the second
memory location 2045 to get the updated data 2025, as
illustrated in FIG. 3D. At operation 712, the computing
device 112 de-allocates the first memory location 250a when
the first pointer counter 260a decrements to zero, as illus-
trated in FIG. 3D.

In some implementations, the computing device 112
recursively performs the operations 708-712 as the data 202
is continuously updated. For example, when a subsequent
third write transaction 214 executes on the data store 150 to
update the data 202 again, the computing resource 112 will
allocate a third memory location 250c¢ in the data store 150,
initialize a third pointer counter 260c¢ associated with the
third memory location 250¢, and write the updated data 202
to the third memory location 250¢. Similar to operation 710
discussed above with respect to the second write transaction
204, the computing device 112 increments the third pointer
counter 260¢ and decrements the second pointer counter
2605 associated with the second memory location 2505
upon completion of the third write transaction 204. There-
after, the computing resource 112 de-allocates the second
memory location 2506 when the second pointer counter
2605 associated with the second memory location 2505
decrements to zero.

Various implementations of the systems and techniques
described here can be realized in digital electronic and/or
optical circuitry, integrated circuitry, specially designed
ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation
in one or more computer programs that are executable
and/or interpretable on a programmable system including at
least one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device.

These computer programs (also known as programs,
software, software applications or code) include machine
instructions for a programmable processor, and can be
implemented in a high-level procedural and/or object-ori-
ented programming language, and/or in assembly/machine
language. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any
computer program product, non-transitory computer read-
able medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices
(PLDs)) used to provide machine instructions and/or data to
a programmable processor, including a machine-readable
medium that receives machine instructions as a machine-
readable signal. The term “machine-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor.

Implementations of the subject matter and the functional
operations described in this specification can be imple-
mented in digital electronic circuitry, or in computer soft-
ware, firmware, or hardware, including the structures dis-
closed in this specification and their structural equivalents,
or in combinations of one or more of them. Moreover,
subject matter described in this specification can be imple-
mented as one or more computer program products, i.e., one

10

15

20

25

30

35

40

45

50

55

60

65

16

or more modules of computer program instructions encoded
on a computer readable medium for execution by, or to
control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter effecting a machine-read-
able propagated signal, or a combination of one or more of
them. The terms “data processing apparatus™, “computing
device” and “computing processor” encompass all appara-
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them. A propagated signal is
an artificially generated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal, that is gener-
ated to encode information for transmission to suitable
receiver apparatus.

A computer program (also known as an application,
program, software, software application, script, or code) can
be written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment. A computer program does
not necessarily correspond to a file in a file system. A
program can be stored in a portion of a file that holds other
programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the
program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub programs, or
portions of code). A computer program can be deployed to
be executed on one computer or on multiple computers that
are located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Moreover, a com-
puter can be embedded in another device, e.g., a mobile
telephone, a personal digital assistant (PDA), a mobile audio
player, a Global Positioning System (GPS) receiver, to name
just a few. Computer readable media suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,

US 9,477,516 Bl

17
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

To provide for interaction with a user, one or more aspects
of the disclosure can be implemented on a computer having
a display device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying
information to the user and optionally a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

One or more aspects of the disclosure can be implemented
in a computing system that includes a backend component,
e.g., as a data server, or that includes a middleware com-
ponent, e.g., an application server, or that includes a frontend
component, e.g., a client computer having a graphical user
interface or a Web browser through which a user can interact
with an implementation of the subject matter described in
this specification, or any combination of one or more such
backend, middleware, or frontend components. The compo-
nents of the system can be interconnected by any form or
medium of digital data communication, e.g., a communica-
tion network. Examples of communication networks include
a local area network (“LAN”) and a wide area network
(“WAN”), an inter-network (e.g., the Internet), and peer-to-
peer networks (e.g., ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some implemen-
tations, a server transmits data (e.g., an HTML page) to a
client device (e.g., for purposes of displaying data to and
receiving user input from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
disclosure or of what may be claimed, but rather as descrip-
tions of features specific to particular implementations of the
disclosure. Certain features that are described in this speci-
fication in the context of separate implementations can also
be implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in
multiple implementations separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
sub-combination or variation of a sub-combination.

20

35

40

45

55

18

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multi-tasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims. For example, the
actions recited in the claims can be performed in a different
order and still achieve desirable results.

What is claimed is:

1. A method comprising:

when a first write transaction executes on a non-transitory

data store:

allocating, by a computing device in communication
with the non-transitory data store, a first memory
location in the non-transitory data store; and

writing data, by the computing device, to the first
memory location;

executing, by the computing device, one or more read

transactions on the first memory location after comple-
tion of the first write transaction;

incrementing, by the computing device, a first pointer

counter associated with the first memory location upon
completion of the first write transaction and for each
read transaction executing on the first memory location
to get the data;

when a second write transaction executes on the non-

transitory data store to update the data:

allocating, by the computing device, a second memory
location in the non-transitory data store; and

writing updated data, by the computing device, to the
second memory location;

after completion of the second write transaction, the

computing device:

decrementing the first pointer counter associated with
the first memory location; and

incrementing a second pointer counter associated with
the second memory location; and

de-allocating the first memory location, by the computing

device, when the first pointer counter associated with
the first memory location decrements to zero.

2. The method of claim 1, further comprising blocking
read access, by the computing device, to a memory location
when a pointer counter associated with the memory location
is zero.

3. The method of claim 2, wherein the pointer counter is
zero when a write transaction executing on the associated
memory location is in progress.

4. The method of claim 1, further comprising upon
executing a read transaction on a memory location to get
data, blocking write access, by the computing device, to the
associated memory location.

5. The method of claim 1, further comprising decrement-
ing, by the computing device, a pointer counter associated
with a memory location after completion of a read transac-
tion on the associated memory location.

US 9,477,516 Bl

19

6. The method of claim 1, further comprising, when the
second pointer counter associated with the second memory
location is zero, executing, by the computing device, one or
more subsequent read transactions on the first memory
location to get the data while the second write transaction
concurrently executes on the second memory location.

7. The method of claim 1, further comprising, when the
second pointer counter associated with the second memory
location is greater than zero, executing, by the computing
device, one or more subsequent read transactions on the
second memory location to get the updated data.

8. The method of claim 1, further comprising, when the
first pointer counter associated with the first memory loca-
tion is greater than zero after the second pointer counter
associated with the second memory location increments,
permitting, by the computing device, any read transactions
executing on the first memory location in progress to com-
plete.

9. The method of claim 1, further comprising, when a
remaining number of memory cycles until completion of the
second write transaction is less than a memory cycle thresh-
old:

blocking one or more subsequent read transactions, by the

computing device, from executing on the first memory
location to get the data; and

delaying the one or more subsequent read transactions, by

the computing device, from executing on the second
memory location to get the updated data until comple-
tion of the second write transaction.

10. The method of claim 1, further comprising, upon
allocating a memory location, initializing, by the computing
device, a pointer counter associated with the memory loca-
tion.

11. The method of claim 1, further comprising increment-
ing, by the computing device, a pointer counter associated
with a memory location for each read transaction executing
on the associated memory location.

12. The method of claim 1, further comprising, when a
third write transaction executes on the non-transitory data
store to update the data after completion of the second write
transaction:

allocating, by the computing device, a third memory

location in the non-transitory data store;

writing updated data, by the computing device, to the

third memory location;

upon completion of the third write transaction, the com-

puting device:

decrementing the second pointer counter associated
with the second memory location; and

incrementing a third pointer counter associated with the
third memory location; and

de-allocating, by the computing device, the second

memory location when the second pointer counter
associated with the second memory location decre-
ments to zero.

13. The method of claim 1, further comprising executing
a write transaction on the non-transitory data store when the
computing device receives a write access request from an
application programming interface executing on a user
device.

14. The method of claim 1, further comprising executing
a read transaction on the non-transitory data store when the
computing device receives a read access request from an
application programming interface executing on a user
device.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

15. The method of claim 1, wherein the non-transitory
data store comprises a hierarchal structure for storing the
data, the data comprising strongly-typed data.
16. A remote system comprising:
a non-transitory data store;
a data processing device in communication with the
non-transitory data store, the data processing device:
when a first write transaction executes on the non-
transitory data store, allocating a first memory loca-
tion in the non-transitory data store and writing data
to the first memory location;

executing one or more read transactions on the first
memory location after completion of the first write
transaction;

incrementing a first pointer counter associated with the
first memory location upon completion of the first
write transaction and for each read transaction
executing on the first memory location to get the
data;

when a second write transaction executes on the non-
transitory data store to update the data, allocating a
second memory location in the non-transitory data
store and writing updated data to the second memory
location;

upon completion of the second write transaction, dec-
rementing the first pointer counter associated with
the first memory location and incrementing a second
pointer counter associated with the second memory
location; and

de-allocating the first memory location when the first
pointer counter associated with the first memory
location decrements to zero.

17. The system of claim 16, wherein the data processing
device blocks read access to a memory location when a
pointer counter associated with the memory location is zero.

18. The system of claim 17, wherein the pointer counter
is zero when a write transaction executing on the associated
memory location is in progress.

19. The system of claim 16, wherein the data processing
device blocks write access to a memory location upon
executing a read transaction on the associated memory
location to get the data.

20. The system of claim 16, wherein the data processing
device decrements a pointer counter associated with a
memory location after completion of a read transaction on
the associated memory location.

21. The system of claim 16, wherein the data processing
device executes, when the second pointer counter associated
with the second memory location is zero, one or more
subsequent read transactions on the first memory location to
get the data while the second write transaction concurrently
executes on the second memory location.

22. The system of claim 16, wherein the data processing
device executes, when the second pointer counter associated
with the second memory location is greater than zero, one or
more subsequent read transactions on the second memory
location to get the updated data.

23. The system of claim 16, wherein the data processing
device permits, when the first pointer counter associated
with the first memory location is greater than zero after the
second pointer counter associated with the second memory
location increments, any read transactions executing on the
first memory location in progress to complete.

24. The system of claim 16, wherein the data processing
device, when a remaining number of memory cycles until
completion of the second write transaction is less than a
memory cycle threshold:

US 9,477,516 Bl

21

blocks one or more subsequent read transactions from
executing on the first memory location to get the data;
and

delays the one or more subsequent read transactions from

executing on the second memory location to get the
updated data until completion of the second write
transaction.

25. The system of claim 16, wherein the data processing
device initializes a pointer counter associated with a
memory location upon allocating the associated memory
location.

26. The system of claim 16, wherein the data processing
device increments a pointer counter associated with a
memory location for each read transaction executing on the
associated memory location.

27. The system of claim 16, wherein the data processing
device:

when a third write transaction executes on the non-

transitory data store to update the data after completion
of the second write transaction, allocates a third
memory location in the non-transitory data store and
writes updated data to the third memory location;

5

10

15

20

22

upon completion of the third write transaction, decre-
ments the second pointer counter associated with the
second memory location and increments a third pointer
counter associated with the third memory location; and

de-allocates the second memory location when the second
pointer counter associated with the second memory
location decrements to zero.

28. The system of claim 16, wherein the data processing
device executes a write transaction on the non-transitory
data store when the data processing device receives a write
access request from an application programming interface
executing on a user device.

29. The system of claim 16, wherein the data processing
device executes a read transaction on the non-transitory data
store when the data processing device receives a read access
request from an application programming interface execut-
ing on a user device.

30. The system of claim 16, wherein the non-transitory
data store comprises a hierarchal structure for storing the
data, the data comprising strongly-typed data.

#* #* #* #* #*

